math Antics.	Name:			
Exercises	Date:			
Exponents & Square Roots				
Fill in the blank.	2 Fill in the blank.			
This symbol without any index number, is the root.	The root sign is also called the sign.			
3 Fill in the blank.	4 Use what you know about exponents and roots to fill in the missing number.			
Exponents and Roots are operations.	$7^2 = 49$ $\sqrt[2]{49} = _$			
5 Use what you know about exponents and roots to fill in the missing number.	6 Use what you know about exponents and roots to fill in the missing number.			
$3 = 81$ $4\sqrt{81} = _$	$\sqrt[3]{125} = 5$ 3 = 125			
7 Use the multiplication table to find the roots of these "perfect squares".	8 Calculate this cube root.			
$\sqrt{25} = _ \sqrt{64} = _$ $\sqrt{36} = _ \sqrt{100} = _$	3√8 =			
9 Use the root function on a calculator to find the value of this root. (Round your answer to 2 decimal places.)	10 Use the root function on a calculator to find the value of this root. (Round your answer to 2 decimal places.)			
$\sqrt{2} =$	3√2 =			

math Antics	Name:			
Exercises	Date:			
Exponents & Square Roots				
1 Fill in the blank.	2 Fill in the blank.			
This symbol $$ without any index number, is the <u>square</u> root. (or 2nd)	The root sign is also called theradical sign.			
3 Fill in the blank. Exponents and Roots are inverse operations.	4 Use what you know about exponents and roots to fill in the missing number. $7^2 = 49$ $\sqrt[2]{49} = \underline{7}$			
5 Use what you know about exponents and roots to fill in the missing number. $3^{4} = 81$ $4\sqrt{81} = 3$	6 Use what you know about exponents and roots to fill in the missing number. $\sqrt[3]{125} = 5$ $\underline{5^3} = 125$			
7 Use the multiplication table to find the roots of these "perfect squares". $\sqrt{25} = 5$ $\sqrt{64} = 8$ $\sqrt{36} = 6$ $\sqrt{100} = 10$	8 Calculate this cube root. $\sqrt[3]{8} = 2$			
9 Use the root function on a calculator to find the value of this root. (Round your answer to 2 decimal places.) $\sqrt{2} = 1.41$	10 Use the root function on a calculator to find the value of this root. (Round your answer to 2 decimal places.) $\sqrt[3]{2} = 1.26$			

See Video for step-by-step solutions to each problem.

Name:

Date:

Inverse Operations

A-ESR 1

Instructions: Exponents and Roots are inverse operations. An exponent can undo a root and vice versa. For each of these pairs of operations, use the first equation to fill in the missing number in the second equation.		
1 $2^5 = 32$	2 $\sqrt[7]{128} = 2$	
$\sqrt[5]{32} = 2$	$2^7 =$	
3 $3^4 = 81$	4 $\sqrt[3]{343} = 7$	
$\sqrt[4]{81} =$	7 = 343	
5 $\sqrt[2]{225} = 15$	6 $5^3 = 125$	
$(2\sqrt{225})^2 = 225$	$\sqrt{125} = 5$	
7 $\sqrt[5]{243} = 3$ $3^5 = 1$	$7^2 = 49$ $\sqrt[2]{1} = 7$	
9 $\sqrt[9]{512} = 2$	10 $4^4 = 256$	
2 = 512	$4\sqrt{256} =$	
11 $11^2 = 121$	12 $\sqrt[2]{169} = 13$	
$\sqrt{121} = 11$	$2\sqrt{169} = 169$	

"Perfect Squares"

Name:

Date:

Name:

A-ESR 3

Date:

Finding Roots with a Calculator

Inverse Operations

Name:

Date:

A-ESR 1

			A-LSK 1
Instructions: Exponents and Roots are inverse operations. An exponent can undo a root and vice versa. For each of these pairs of operations, use the first equation to fill in the missing number in the second equation.			
1	$2^{5} = 32$ $\sqrt[5]{32} = 2$	2	$\sqrt[7]{128} = 2$ $2^7 = 128$
3	$3^4 = 81$ $\sqrt[4]{81} = 3$	4	$\sqrt[3]{343} = 7$ $7^3 = 343$
5	$\sqrt[2]{225} = 15$ 15 $^2 = 225$	6	$5^3 = 125$ $\sqrt[3]{125} = 5$
7	$\sqrt[5]{243} = 3$ $3^5 = 243$	8	$7^2 = 49$ $2\sqrt{49} = 7$
9	$\sqrt[9]{512} = 2$ $2^9 = 512$	10	$4^4 = 256$ $4\sqrt{256} = 4$
11	$11^2 = 121$ $\sqrt[2]{121} = 11$	12	$\sqrt[2]{169} = 13$ 13 ² = 169

"Perfect Squares"

Name:

Date:

Instructions: Use a multiplication table to help find the answers to these square roots. (Hint: for a few of the problems that are not on the multiplication table, you will also need to use what you know about powers of 10) $\sqrt{100} = 10$ $\sqrt{4} = 2$ $\sqrt{36} = 6$ $\sqrt{9} = 3$ $\sqrt{400} = 20$ $\int 1 = 1$ 5 $\sqrt{25} = 5$ $\boxed{8} \quad \sqrt{49} = \underline{7}$ $\sqrt{16} = 4$ 9 $\sqrt{81} = 9$ $\sqrt{64} = 8$ 12 $\sqrt{900} = 30$ $\sqrt{121} = 11$ $\sqrt{144} = 12$ $15 \quad \sqrt{0} = 0$ $16 \sqrt{10,000} = 100$

Name:

Date:

Finding Roots with a Calculator

Instructions: Use the root function on a calculator to find these roots. Round your answers to 3 decimal places. $\sqrt{2} = 1.414$ $\sqrt{3} = 1.732$ $3\sqrt{3} = 1.442$ $\sqrt[4]{3\sqrt{7}} = 1.913$ $5 \sqrt{12} = 3.464$ $\sqrt[6]{4/9} = 1.732$ $\sqrt{21} = 4.583$ $\sqrt{50} = 7.071$ $5\sqrt{50} = 2.187$ $\sqrt[10]{3}{100} = 4.642$

