

Inverse Operations

Name:

Date:

nverse Operations A-E			
Instructions: Exponents and Roots are inverse operations. An exponent can undo a root and vice versa. For each of these pairs of operations, use the first equation to fill in the missing number in the second equation.			
	$2^{5} = 32$ $\sqrt{32} = 2$	2	$\sqrt[7]{128} = 2$ $2^7 = 128$
	$3^4 = 81$ $\sqrt{81} = 3$	4	$\sqrt[3]{343} = 7$ $7^3 = 343$
	$\sqrt{225} = 15$ $15^2 = 225$	6	$5^3 = 125$ $\sqrt[3]{125} = 5$
	$\sqrt[5]{243} = 3$ $3^5 = 243$		$7^2 = 49$ $2\sqrt{49} = 7$
9	$\sqrt[9]{512} = 2$ $2^9 = 512$		$4^4 = 256$ $\sqrt[4]{256} = 4$
	$11^2 = 121$ $\sqrt{121} = 11$	12	$\sqrt[2]{169} = 13$ 13 ² = 169

"Perfect Squares"

Name:

Date:

Instructions: Use a multiplication table to help find the answers to these square roots. (Hint: for a few of the problems that are not on the multiplication table, you will also need to use what you know about powers of 10) $\sqrt{100} = 10$ $\sqrt{4} = 2$ $\sqrt{36} = 6$ $\sqrt{9} = 3$ $\sqrt{400} = 20$ $\boxed{6} \quad \sqrt{1} = \underline{1}$ 5 $\sqrt{25} = 5$ $\boxed{8} \quad \sqrt{49} = \underline{7}$ $\sqrt{16} = 4$ 9 $\sqrt{81} = 9$ $\sqrt{64} = 8$ 12 $\sqrt{900} = 30$ $\sqrt{121} = 11$ $\sqrt{144} = 12$ $15 \quad \sqrt{0} = 0$ $16 \sqrt{10,000} = 100$

Name:

Date:

Finding Roots with a Calculator

Instructions: Use the root function on a calculator to find these roots. Round your answers to 3 decimal places. $\sqrt{2} = 1.414$ $\sqrt{3} = 1.732$ $3\sqrt{3} = 1.442$ $\sqrt[4]{3\sqrt{7}} = 1.913$ $5 \sqrt{12} = 3.464$ $\sqrt[6]{4/9} = 1.732$ $\sqrt{21} = 4.583$ $\sqrt{50} = 7.071$ $5\sqrt{50} = 2.187$ $\sqrt[10]{3}{100} = 4.642$

