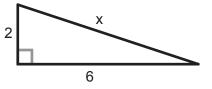
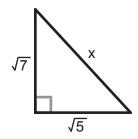
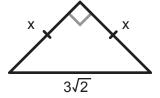


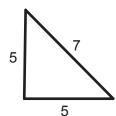
Name:


Date:

The Pythagorean Theorem


Tind the length of the unknown side 'x'.


> Find the length of the unknown side 'x'.

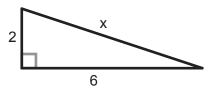

Find the length of the unknown side 'x'.

Find the length of the unknown side 'x'.

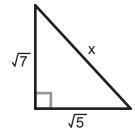
Is this a RIGHT triangle?

If the longest side of a triangle is 10 meters, and the other two sides are 6 and 8 meters long, is it a RIGHT triangle?

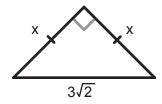
Date:


The Pythagorean Theorem

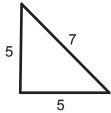
1 Find the length of the unknown side 'x'.


$$3^{2} + x^{2} = 5^{2}$$
 $9 + x^{2} = 25$
 -9
 $x^{2} = 16$
 $x = 4$

> Find the length of the unknown side 'x'.


$$2^{2} + 6^{2} = x^{2}$$
 $4 + 36 = x^{2}$
 $40 = x^{2}$
 $x = \sqrt{40}$
or $2\sqrt{10}$
or $6.32...$

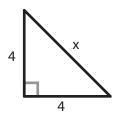
Find the length of the unknown side 'x'.


$$\sqrt{7}^2 + \sqrt{5}^2 = x^2$$
 $7 + 5 = x^2$
 $12 = x^2$
 $12 = x^2$
or $2\sqrt{3}$
or $3.46...$

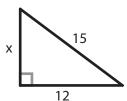
Find the length of the unknown side 'x'.

$$x^{2} + x^{2} = (3\sqrt{2})^{2}$$
 $2x^{2} = (9\cdot2)$
 $x^{2} = \sqrt{9}$
 $x^{2} = \sqrt{9}$
 $x^{2} = \sqrt{9}$
 $x^{2} = \sqrt{9}$
 $x^{2} = \sqrt{9}$

5 Is this a RIGHT triangle?


Check:
$$5^2 + 5^2 \stackrel{?}{=} 7^2$$

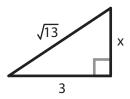
 $25 + 25 \stackrel{?}{=} 49$
 $50 \neq 49$ No

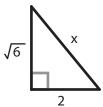

If the longest side of a triangle is 10 meters, and the other two sides are 6 and 8 meters long, is it a RIGHT triangle?

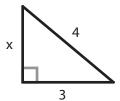
Check:
$$6^2 + 8^2 \stackrel{?}{=} 10^2$$

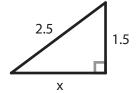
 $36 + 64 \stackrel{?}{=} 100$
 $100 = 100$ Yes

Finding an Unknown Side - Set 1

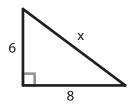

Instructions: For each right triangle, use the Pythagorean Theorem to find the length of the unknown side 'x'. (You can use a calcuator for the arithmetic if you want to.)




$$4^{2} + 4^{2} = x^{2}$$
 $16 + 16 = x^{2}$
 $32 = x^{2}$
or $4\sqrt{2}$
or $5.656...$

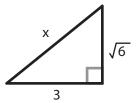

3

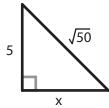
5

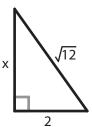


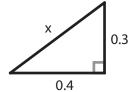
Name:

Date:


Finding an Unknown Side - Set 2


Instructions: For each right triangle, use the Pythagorean Theorem to find the length of the unknown side 'x'. (You can use a calcuator for the arithmetic if you want to.)




3

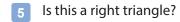
5

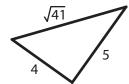
Is it a right triangle?

G-PT 3

Instructions: Use the Pythagorean Theorem to test the triangles shown or described in each problem below.

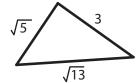
If a triangle has sides that are 12, 10 and 6 meters long, is it a right triangle?


NOTE: when plugging the three sides into the test equation, always make the longest side 'c'.


Test:
$$6^2 + 10^2 \stackrel{?}{=} 12^2$$

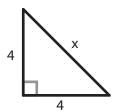
 $36 + 100 \stackrel{?}{=} 144$
 $136 \neq 144$ Nope!

Is this a right triangle?



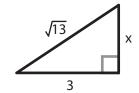
- Is a triangle with side lengths of 4, 5, and 6 inches a right triangle?
- A triangle has side lengths that are 7 cm, 7 cm and 11cm. Is it a right triangle?

Is this a right triangle?



Finding an Unknown Side - Set 1

G-PT 1

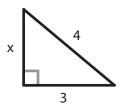

Instructions: For each right triangle, use the Pythagorean Theorem to find the length of the unknown side 'x'. (You can use a calcuator for the arithmetic if you want to.)

1

$$4^{2} + 4^{2} = x^{2}$$
 $16 + 16 = x^{2}$
 $32 = x^{2}$
or $4\sqrt{2}$
or $5.656...$

3

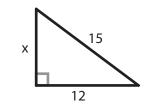
$$x^{2} + 3^{2} = \sqrt{13}^{2}$$


$$x^{2} + 9 = 13$$

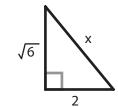
$$-9 - 9$$

$$x^{2} = 4$$

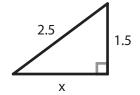
$$x = 2$$


5

$$x^{2} + 3^{2} = 4^{2}$$
 $x^{2} + 9 = 16$
 $-9 - 9$
 $x^{2} = 7$

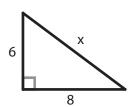

or 2.645...

2



$$x^{2} + 12^{2} = 15^{2}$$
 $x^{2} + 144 = 225$
 $-144 - 144$
 $x^{2} = 81$
 $x = 9$

4


$$\sqrt{6}^2 + 2^2 = x^2$$
 $6 + 4 = x^2$
 $10 = x^2$
or 3.162...

$$x^{2} + 1.5^{2} = 2.5^{2}$$
 $x^{2} + 2.25 = 6.25$
 $-2.25 - 2.25$
 $x^{2} = 4$
 $x = 2$

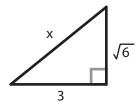
Finding an Unknown Side - Set 2

Instructions: For each right triangle, use the Pythagorean Theorem to find the length of the unknown side 'x'. (You can use a calcuator for the arithmetic if you want to.)

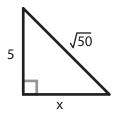
$$6^{2} + 8^{2} = x^{2}$$

$$36 + 64 = x^{2}$$

$$100 = x^{2}$$


$$x^{2} + 1^{2} = \sqrt{26}^{2}$$

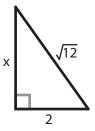
$$x^{2} + 1 = 26$$


$$-1 - 1$$

$$x^{2} = 25$$

3

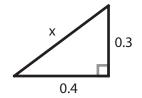
$$\sqrt{6^2 + 3^2} = x^2$$
 $6 + 9 = x^2$
 $15 = x^2$
or 3.872


$$5^{2} + x^{2} = \sqrt{50}^{2}$$

$$25 + x^{2} = 50$$

$$-25$$

$$x^{2} = 25$$


$$x = 5$$

$$x^{2} + 2^{2} = \sqrt{12}^{2}$$
 $x^{2} + 4 = 12$
 $-4 - 4$
 $x^{2} = 8$

or $2\sqrt{2}$

or $2.828...$

$$0.3^{2} + 0.4^{2} = x^{2}$$

$$0.09 + 0.16 = x^{2}$$

$$0.25 = x^{2}$$
or $\sqrt{0.25}$

Is it a right triangle?

Instructions: Use the Pythagorean Theorem to test the triangles shown or described in each problem below.

If a triangle has sides that are 12, 10 and 6 meters long, is it a right triangle?

NOTE: when plugging the three sides into the test equation, always make the longest side 'c'.

Test:
$$6^2 + 10^2 \stackrel{?}{=} 12^2$$

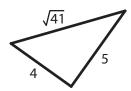
 $36 + 100 \stackrel{?}{=} 144$
 $136 \neq 144$ Nope!

Is this a right triangle?

Test:

1est:
$$4^{2} + 4^{2} \stackrel{?}{=} \sqrt{32}^{2}$$

16 + 16 $\stackrel{?}{=} 32$
32 = 32 Yes


Is a triangle with side lengths of 4, 5, and 6 inches a right triangle?

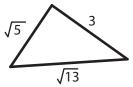
Test:
$$4^2 + 5^2 \stackrel{?}{=} 6^2$$

 $16 + 25 \stackrel{?}{=} 36$
 $41 \neq 36$ No

A triangle has side lengths that are 7 cm, 7 cm and 11cm. Is it a right triangle?

Test:
$$7^2 + 7^2 \stackrel{?}{=} 11^2$$

 $49 + 49 \stackrel{?}{=} 121$
 $98 \neq 121$ No


Is this a right triangle?

Test:

$$4^{2} + 5^{2} \stackrel{?}{=} \sqrt{41}^{2}$$
 $16 + 25 \stackrel{?}{=} 41$
 $41 = 41$ Yes

Is this a right triangle?

Test:

$$3^{2} + \sqrt{5}^{2} \stackrel{?}{=} \sqrt{13}^{2}$$

9 + 5 \hfrac{?}{=} 13
14 \neq 13 \quad \text{No}