Date:

math Antics[®] Exercises

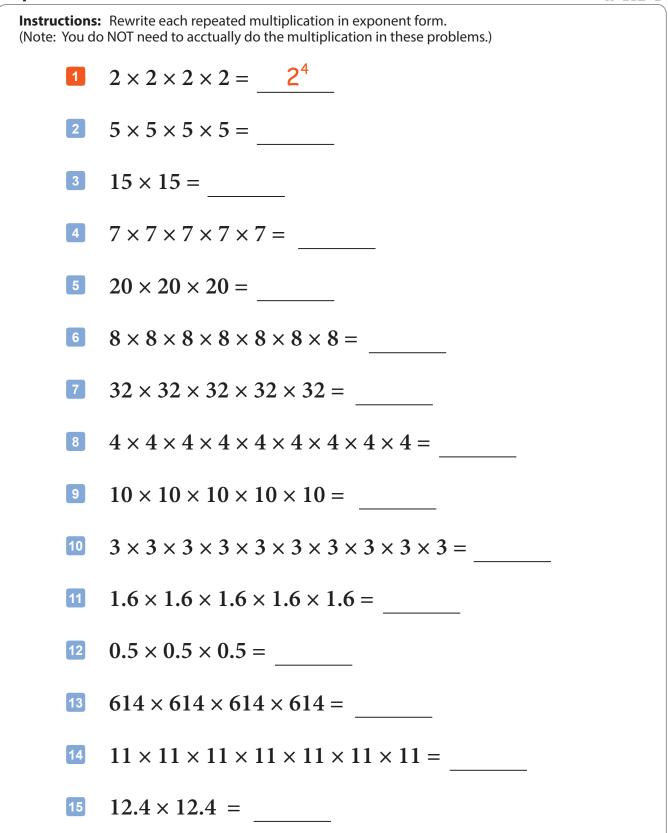
Intro to Exponents

1 Label the parts of this expression. 5 ³ 5 ³ Be write this repeated multiplication in	2 Fill in the blanks. If a number is "squared" that means it is raised to the power. If a number is "cubed" that means it is raised to the power. A Pe write this repeated multiplication in
3 Re-write this repeated multiplication in exponent form.	4 Re-write this repeated multiplication in exponent form.
$7 \times 7 \times 7 \times 7$	$2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
5 Calculate these "squares". (Hint: Use your multiplication table.) $6^2 = 7^2 =$ $9^2 = 12^2 =$	6 Calculate this exponent. $3^3 =$
7 Calculate this exponent.	8 Calculate this exponent.
$14^2 =$	$10^4 =$
9 Use the exponent button (x^y) on a calculator to find the value of this exponent.	10 Use the exponent button (x^y) on a calculator to find the value of this exponent.
$2^{10} =$	$5^7 = 0^{-2015}$ Math Blue Mation 110

Date:

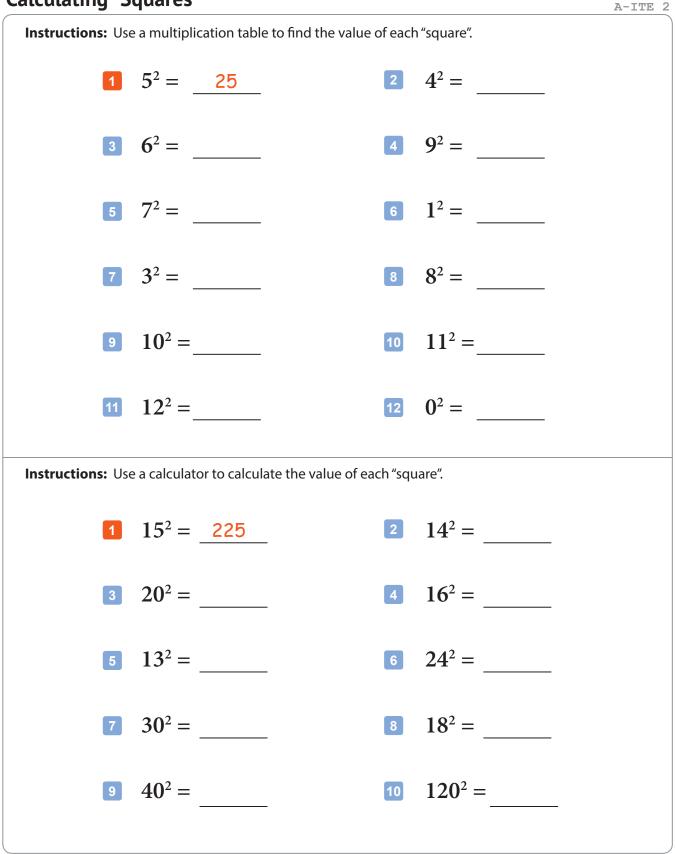
math Antics[®] Exercises

intro to Exponents	Intro to	Exponents
--------------------	----------	-----------


1 Label the parts of this expression.	2 Fill in the blanks.
Exponent (or Index)	If a number is "squared" that means it is raised to the <u>2nd</u> power.
Base 5 ³ (or Index)	If a number is "cubed" that means it is raised to the <u>3rd</u> power.
3 Re-write this repeated multiplication in exponent form.	4 Re-write this repeated multiplication in exponent form.
$7 \times 7 \times 7 \times 7$	$2 \times 2 \times 2 \times 2 \times 2 \times 2$
7 ⁴	2 ⁶
5 Calculate these "squares". (Hint: Use your multiplication table.)	6 Calculate this exponent.
$6^2 = 36$ $7^2 = 49$	$3^3 = 3 \times 3 \times 3 = 27$
$9^2 = 81$ $12^2 = 144$	
7 Calculate this exponent.	8 Calculate this exponent.
$14^2 = 14 \times 14 = 196$	$10^4 = 10 \times 10 \times 10 \times 10$
	= 10,000
9 Use the exponent button (x ^y) on a calculator to find the value of this exponent.	10 Use the exponent button (x ^y) on a calculator to find the value of this exponent.
$2^{10} = 1,024$	5 ⁷ = 78,125
	r step-by-step © 2015 Math Plus Motion, LLC each problem.

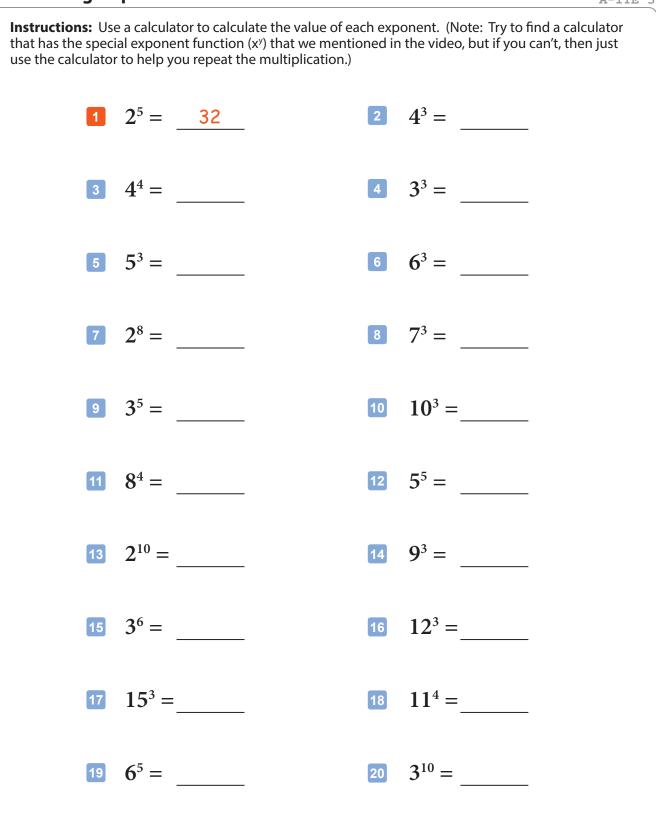
Date:

Exponent Form


A-ITE 1

Date:

Calculating "Squares"



Date:

Calculating Exponents

A-ITE 3

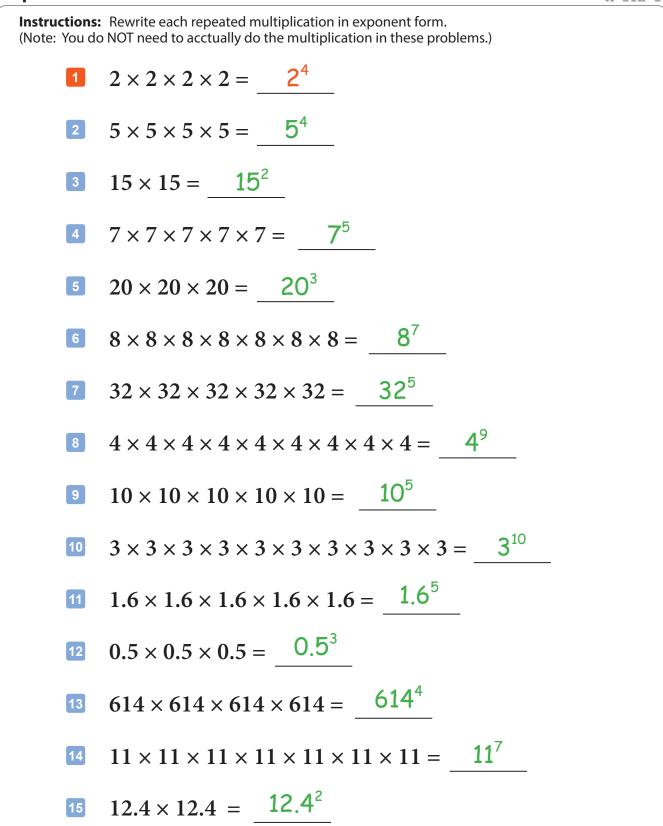
Powers of Two

Name:

Date:

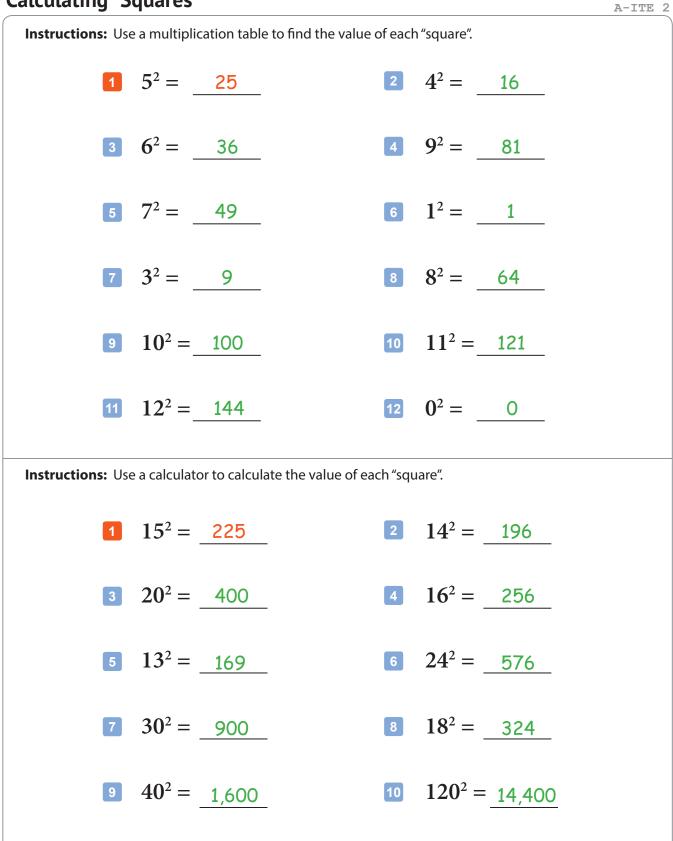
A-ITE 4

Instructions: Computers use a number system that has only two digits: 1 and 0. This number system is called "Binary" or "Base-2". Because this number system has only two digits, **powers of two** (which are exponents with 2 as the base) are very important in computer science. On this page, calculate the first ten powers of two.



Date:

Exponent Form


A-ITE 1

Date:

Calculating "Squares"

Date:

Calculating Exponents

A-ITE 3

alculating Ex	cponents		A-ITH	Ξ3
that has the speci		(x ^y) that we mentioned ir	oonent. (Note: Try to find a calculator a the video, but if you can't, then just	
1	2 ⁵ = <u>32</u>	2	$4^3 = 64$	
3	4 ⁴ =256	4	$3^3 = 27$	
5	5 ³ = <u>125</u>	6	$6^3 = 216$	
7	2 ⁸ =256	8	$7^3 = 343$	
9	3 ⁵ = 243	10	$10^3 = 1,000$	
11	8 ⁴ = 4,096	12	5 ⁵ = 3,125	
13	2 ¹⁰ = 1,024	14	$9^3 = 729$	
15	3 ⁶ = 729	16	$12^3 = 1,728$	
17	$15^3 = 3,375$	18	$11^4 = 14,641$	
19	$6^5 = 7,776$	20	3 ¹⁰ = <u>59,049</u>	

© 2015 Math Plus Motion, LLC

Powers of Two

Name:

Date:

A-ITE 4

Instructions: Computers use a number system that has only two digits: 1 and 0. This number system is called "Binary" or "Base-2". Because this number system has only two digits, **powers of two** (which are exponents with 2 as the base) are very important in computer science. On this page, calculate the first ten powers of two.